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SUMMARY 

W 
The functions of the Keplerian elliptic motion are 

expanded with respect to mean anomaly and the eccentricity 

by applying Poincar^'s method of continuation in a direct 

manner no the equations of motion.  Two algorithms are 

proposed; both lead to programs by which tne classical 

expansions are constructed symbolically and automatically 

on a computer in double precision arithmetic.  Even to as 

high a degree as 30 in the eccentricity, the procedures are 

remarkably swift.  Special care is taken here in describing 

significant error controls at eacn step of the recurrences. 
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Astronomers engaged In Celestial Mechanics devote a substantial 

portion of their time to the routine manipulation of literal expansions. 

It has long been recognized that digital computers are capable in 

principle of easing this burden [3], [4J. 

As a possible start toward the practical implementation of that 

capability, we present here a set of algorithms which have been written 

into programs for an IBM 7094.  The package deals with the developments 

for the elliptic motion in the classical Problem of Two Bodies. 

The mathematical entities to be processed are (truncated) Fourier 

series of the mean anomaly i,     their coefficients being (truncated) 

power series of the eccentricity e: 

(1)  FUje) = I |7 I C  ek\cos JA + ( ][ S  ek)sin jul. 
j>.0LVk>0 *'■>    ' Vk>.0 ^'J /     J 

The coefficients C.    and S. . are rational numbers, and it would be 

in keeping with the ideal spirit of symbolic computing to store and 

manipulate them as such in the machine.  Recently [6], this formidable 

task has been completed with success.  Nonetheless the newly extended 

Cayley's tables are not likely to abate the discussion whether or not, in 

the present state of computing machinery, we should compromise and 

represent the coefficients C. .  and S. .  as floating point variables. 
K , J ^ i J 

The solutions of  the Problem of Two Bodies are known in a closed 

form;  thus their analytical expansions in d'Alembert series of the mean 

anomaly and the eccentricity serve little purpose within that problem 

itself.    But  these developments are the indispensable ingredients of 

i 
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elaborate Perturbation Theories. Now such theories operate 

spontaneously in the field of real numbers and, although It Is 

often of the utmost Importance to decide how close the multiple 

argument of a trigonometric term Is to a commensurability ratio, 

we cannot think of an Instance where it was essential to Identify the 

coefficient Itself of such a trigonometric term as being a rational 

number.  Thus we find some ground for submitting a decisive question: 

should we hold for more than a mathematical curiosity the fact that 

the coefficients in the Fourier expansions of a Keplerian motion are 

genuinely rational numbers? 

Should we decide at the beginning of a Perturbation Theory to 

process the special functions of the Keplerian motion in their genuine 

arithmetic, which is that of rational numbers, then we impose on 

ourselves the formidable task of operating throughout with Integer 

variables of multiple length, to track down at every step the 

nonrational quantities which are bound to occur and to replace them 

by literal symbols.  These will have to be treated by the program as 

symbolic variables; in this way the result will involve no round off 

error, and the dependence on these symbols will be explicitly displayed. 

But thereby the number of auxiliary variables as locumtenens for 

irrational numbers will have proliferated at a fast pace. Keeping this 

growth under control should require Introducing the basic concepts of 

Galois Theory of Fields, especially the fundamental distinction between 

algebraic and transcendental extensions of a field. Every time an 

Irrational symbol is Introduced, it ought to be decided whether it is 
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transcendental or algebraic over the field of rational numbers, and 

In the latter case, whether or not it belongs to the algebraic 

extension generated by the algebraic numbers previously Introduced. 

Away from these artificial complexities, our aim is to generate 

in a straightforward manner the coefficients In double precision 

arithmetic for the expansions of the elliptic motion. 

At the suggestion of Moulton [7], [8], development for the 

cosine of the eccentric anomaly E is derived immediate1y from the 

differential equation for the radial motion. The construction consists 

mainly in applying Poincare's method of continuation:  a transformation 

of coordinates exchanges the study near the circular solution for a 

study near an equilibrium position, so that the family of elliptic 

motions having a preassigned apsidal line and a given mean motion turns 

out to be the family of periodic orbits issued from the equilibrium 

point representing the circular trajectory with the same mean motion. 

As we adopt the eccentricity as the analytical coordinate along the 

family emanating from the equilibrium, the method of analytical 

continuation generates the expansion of cos E as a Fourier series of 

the mean anomaly whose coefficients are power series of the eccentricity. 

The outstanding merit of the algorithm is that it generates at the same 

time the powers cos E as series of the same type. Consequently only 

elementary manipulations of fImple Polsson series are necessary to 

generate therefrom the classical expansions in the Problem of Two Bodies. 

As an alternative, we examined another algorithm by which we expand 

in a direct manner the Cartesian coordinates x - r cos f and y « r sin f 
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in terms of the mean anomaly and the eccentricity. A time dependent 

transformation of coordinates represents the circular motion as an 

equilibrium position in a conservative dynamical system with two degrees 

of freedom. Although two of the characteristic exponents at the 

equilibrium are zero, Polncar^'s method of continuation establishes 

that the equilibrium generates a one-parameter family of periodic 

solutions which actually represents the elliptic motions having a 

preassigned line of apsides and the same mean motion as the generating 

circular orbit. Together with the coordinates x   and y,    the 

analytical continuation produces all monomials x"yq up to a given 

degree n ■ p + q. 

Both direct algorithms proposed here call upon a package of 

subroutines [2] to manipulate series of the type (1)  Each series 

is denoted by a FORTRAN variable.  It points to a header word in core 

which contains the address of the FORTRAN variable and the number of 

terms in the series. The miscellaneous series are stored dynamically 

in sequential order in a preassigned area of the core or on a disk. 

As it was first proposed by Herget and Musen [5], a series is considered 

as a mapping F of the product set N * N x Z/2 into the set of real 

numbers (N denotes the set of natural integers, Z that of rational 

Integers, and  Z/2 the set of congruences modulo 2 in  Z , thus a 

set reduced to the two elements 0 and 1. Each element (j,k,I) of 

N x N x Z/2 are packed In one word; the fact that F(j,k,I) is the 

image of the element  (j,k,I) by the mapping F is represented 

physically in the core of the machine by placing the double word 
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containing the real number    F(j,k,I)    next to the label word containing 

the Indices    (j,k,I).    The coefficients    C    .     and    S    ,     of a series 
j tk      J »^ 

(1) are stored below its header word dynamically on the principle:  first 

come, first served.  I - 0 refers to a cosine term,  I « 1 to a sine 

term; the multiple j  of the argument i    is restricted to be positive for 

a cosine term and strictly positive for a sine term (by changing the 

sign of the coefficient S. .,  when necessary). 

To automatize completely Poincare's method of continuation, we 

found it very convenient to split up series of type (1) into the sums 

F(£;e) - ^ F. ()l)ek 

k>p K 

so  that the terms ^i.(^) appear as genuinely finite (and not truncated) 

Fourier sums of the mran  anomaly I.    Poincare's continuation is then 

accomplished not by successive iterations but by recurrence: once the 

coefficients of all powers of e have been determined up to order N, 

N+l 
that of e " is computed onae and for all.    At this stage, the key of 

the method is the symbolic inverse of a differential operator to be 

applied to a trigonometric sum.  But, with respect to the natural laws 

of addition, multiplication and scalar multiplication, the series of the 

type (1) are endowed with a structure of commutative graded algebra with 

a unity over the field of real numbers; moreover, the differential 

operators which come up at various stages of the algorithms are 

endomorphisms if not of the whole algebra, at least of some of its 

most remarkable subalgebras. This is precisely the reason why Poincare's 

method of continuation is so easily Implemented automatically on a 

computer. 

3 i 
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1.     THE DIRECT EXPANSION OF    cos  E 

In the Lagranglan function 

(2) £ - JsCx2 + y2) + ^ , + y2rs. 

which describes the Problem of Two Bodies in reference to a  fixed 

heliocentric coordinate system, we  Introduce new Independent  and 

dependent variables by means of the definitions: 

(31)    x -  aX, 

(4)      n2a3 - , 

(32)    y - aY, 

(5)       * - nt; 

we also define a normalized radial distance    R    such that 

(6^    r -  aR, (62)    R -   |X2 + Y2^. 

and we define by D the differentiation with respect to %.     Thus 

2 2 
on dividing by a /n ,  the transformed Lagranglan function is 

(7) £*  ls[(DX)2 + (DY)2] +i . 

We change from the Cartesian coordinates (C»n)  to the polar 

coordinates  (R,6) such that 

(8)    X » R cos 9, Y - R sin 6. 
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Slnce 6 Is ignorable In the Lagranglan, we substitute to £   the 

Routhlan function [10]: 

2 

(9) .»- him2 -7%+ ^ . 
K 

where C Is the constant of integration introduced by the integral 

of angular momentum 

(10) R2 • 06 - C. 

Assume that the conditions for an elliptical orbit are satisfied. 

Then a is the major semi-axis of the orbit, n the mean motion; the 

constant C is related to the eccentricity e by the relation 

(11) vC7. 

and, if we put the origin of time at an Instant of passage at perigee, 

I      is  the mean anomaly.  Denoting by E the eccentric anomaly, we put 

(12) p - cos E, 

so that we can express the radius vector as the function 

(13) R - 1 - pe. 
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We substitute p for R In the Routhlan function (9), and we expand 

2 2 l/(l-pe) and l/(l-pe)  as power series of e. On dividing by e , 

we obtain 3t   in the form of the power series 

(14)    jp. JjCDp)^ - ^ p^ + i ^ (n + 1)(1 - p2)pne
n, 

n >1 

2 
where we have omitted the constant term (1+e )/2. Thus the Lagrangian 

equation becomes 

(15)      (D2 + l)p - y ^ (n + l)[n - (n+2)p2]pn'1e
n. 

n>l 

Obviously, when    e » 0,     the equilibrium solution    p i 0    represents 

the Keplerian circular motion with radius    a    and mean motion    n.    Moreover 

the varlatlonal equation around that equilibrium 

(16) (D2 + l)p - 0 

admits as a solution 

(17) P0 - cos I 

for the initial conditions 

(18)    p0(0) - 1,     Dp0(0) « 0. 

Therefore, according to Poincare's method of continuation, such a solution 

can be extended analytically into the power series 

•>^«'--^M«^i»M*CV-fc'.)*-iil^««IB*Wj**»M*t*i'lMi'***>.i'W-'J.- 
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(19) Pinie)  -   I   Pn(£)en 

n>0 

whose coefficients    p  (£)     for    n >^ 1    have the following properties: 

(a)    pnU + 2Tr)  = pn(£) 
("condition of periodicity"); 

(b)    p  (0)  = 0,    Dp   (0)  - 0    ("initial conditions") 
n n 

On substituting  (19)   in the original differential equation, we 

obtain from equating like powers of    e    in both members  a recurrent 

system of differential equations which determine  the coefficients of 

(19).     Before we write down this system,  let us Introduce a convenient 

notation.    We put 

(20) pn(*;e) - 1 PD
(n)a)ep 

p>0    P 
(n > 0); 

<■■ 

thus p    represents the Fourier series which is the coefficient of 

e  in the expansion of  (cos E) . With this convention, we can write 

the coefficient of e  in the right-hand member of (15) as the function 

(21)  UnU) - J I  (k + l)[kp^ i:" - <-^.t1']   ("->. 

and we find that p  = p    is a solution of the differential equation 
n        n 

(22) (D    + l)pn - U . 
n        n 

The  following facts can be established by recurrence on the index    n 

from examining the right-hand members    U      and taking into account the 

initial conditions: 

*MMMWMMM| 
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(a) For any n ^ 0, p  is a finite  trigonümetric sum; more 

precisely, It does not contain multiples jJl of the mean anomaly 

beyond j - n + 1. 

(b) For any n ^ 0,  p  is an even  function of l\    thus it 

contains only cosine terms. 

(c) For any even    n > 0,  p (£ + IT) » -p (O, whereas for any 
— n n 

odd   n >_ 1,    p  U + TT) = p   (£). 

Property   (a)  guarantees that  the coefficients    p      can be computed 
n 

from the recurrence in a closed  form.  In other words, they do not result 

from successive approximations, but once their respective differential 

equation (22) has been solved, they are known as accurately as it can be, 

save for errors resulting from cumulative rounding off in the arithmetic 

manipulations of the coefficients. 

Property (c) implies that, at an even order N = 2m,  the right-hand 

member  U„  contains only cosine terms of odd multiples of the mean 

anomaly.  Thus it looks as if it would contain among others a term in 

cos I ,     As this would prevent any solution of (22) from being periodic, 

we have to interpret Poincard's theorem as meaning that, at every even 

order, the various contributions to U„  arrange themselves so as to 

cancel exactly  the term in cos i.     In the course of the recurrence, 

round off errors will prevent an exact cancellation.  Thus the coefficient 

of cos £ in  U3  will provide a control on the errors at every even 

order of the recurrence. 

We list in Table I the size of the coefficient of cos I    as it 

appeared in the right-hand members of U-  before these spurious terms 

were rejected by the program. 

/ 
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Table I 

Error control at even orders In the expansion of cos E 

,                ■ -■■          ■        ■'  -   ■  ■ '-I 

Order Error Order Error 

2 0 16 3 x IQ"15 

4 0 18 -8 x 10-1A 

6 0 20 1 x lO"13 

8 0 22 -4 x ID"13 

10 0 24 -2 x lO"12 

12 0 26 -4 x lO"12 

14 -2 x 10" 
14 28 -1 x ID"11 

1 

i ! 

At the odd orders,   the recurrence brings two controls on the 

error. 

I8)    Let us recall that the average value of     r/a    over the mean 

2 
anomaly Is equal to     1 + e /2.    Consequently,   the coefficients 

p2 +1   ^n — ^     should be exempt from constant terms, which implies 

that the right-hand members    U»    .     themselves should be exempt 

from such terms.     In point of fact,   in the course of building 

U0   ...    they cancel out exactly when the various    p      and    their 
^n+1 n 

powers are produced  in integer arithmetic.     But,  in our algorithm, 

as we proceed in double precision arithmetic,   they might still 

appear,  buc as very small numbers.    Hence they serve as tests on 

the adverse effects of round off errors. 

2°)    In order to integrate the differential equations  (22), we 

proceed in two steps.     First we genetate the particular solution 

"•»WHMMn^ 
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(23) 
n 2.,  n 

(n > 1) 
D +1 

by application of the inverse differential operator 1/D +1 

according to the rules 

(2^) 1      „    1 ~r— cos pi  ■ —-— cos p£, 
D +1        -p +1 

(p ^ 1), 

(2A2) 
1 i 
—— sin pi -  —-— sin pi, 
D +1        -p +1 

(P ^ 1) 

As we just observed, this operation is always possible: neither at 

odd nor at even orders, does U  contain critical terms in cos %, 
n 

Then to the particular solution p*, we should add the general 

solution of the homogeneous differential equation, so as to obtain 

p » C cos )l + S sin £ + p*, 
n   n        n       n 

where  the arbitrary coefficients    C      and    S      ought to be determined 

by the initial conditions. 

Of course,  since    p       is a sum of cosine terms only,  we find at any 

order that    S    = 0. n 

At the even orders, we find that 

C2n=-p!n(0) 
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But at the odd orders, we know that     p„    .     and    IL   . 1,    hence     p*    -, 

contain only cosines of even multiples of     Ä.    Therefore, not only should 

we make    C„     .  ■ 0,    but we should also check that the particular solution 

C*  .,    meets the  initial condition 
2n+l 

J2n+1 (0)  - 0. 

In Table  II,  we enter, for each odd order,  the size of the spurious 

independent  term which came into    U«   .,     and the initial values 

P2W0)' 
i 

Table II 

Error control at odd orders in the expansion of cos E 

■   ■    -   - "■               —i 

Order <U2n+l> ^n+l(0> Order <U2n+l> ^n+l(0) 

3 0 0 17 2 x lO-1^ -8 x lo-14 

5 0 0 19 -8 x 10~14 2  x  lO"13 

7 -4 x icT16 0 21 5 x iQ-14 -2  x  lO"13 

9 7 x io"16 -2 x icT15 
23 -4 x  iQ-^ 3  x  lO"13 

11 -3 x lo"15 7 x lO"15 25 2 x lO"" -4  >   lO"12 

13 4  x lo"15 -7 v lO"14 27 -6 x 10"12 8  x  lO"12 

15 -2  x lo"14 3 x lO"14 29 -4 x lO'14 -4  x  10"11 

1 
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2.     DERIVED EXPANSIONS 

Other special functions of the Keplerian elliptic motion may 

be expanded by elementary algebraic operations  from the developments 

of    cosPE    (p >^ 1)     that we have just  obtained. 

Thus,  from the series 

cosPE3  pP=   I   p<P>en (p >   1). 
n>0 

we find immediately the expansion of 

(25) R = £= 1 - e cos E * 1 - Y p(11
) e". 

a **,     n-1 n>l 

(26)    i = 7 E l-e cos E = S P"
6
" = I 

n n e 
n>0      n>0 p>_0   K 

(1) (27)   X - - = e - cos E » -1 + (1 - pj^^e - 2 P 
3 i     n>2 n 

(l)en 

(28) E = 
(s) 

ds. 

We observe that the average of a/r over the mean anomaly is equal to 1, 

so that E - £ turns out to be a d'Alembert series in I    and e whose 

average over the mean anomaly is zero.  Therefore, by elementary 

manipulations of series of the type (1), we are able to expand in the mean 

anomaly the function 

(29) sin E = - (E - £), e 

lüiiiir—MWiii i «I TimiwrrMiiiir im rn ~*i 
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and this development In turn yields the expansion of 

f 

(30) Y ■ X -    vi-e2  sin 

The "equation of the center" is given by the quadrature 

f = Vl-e2     /       -1      ds. 
•^O    R  (s) 

To experiment more extensively with the simple programming techniques 

proposed here,  we undertook to expand all powers    (r/a)   ,   2 <^ p  <^ 15,    in 

series of the mean anomaly and of the eccentricity.    The computation is 

easy,  since it  reduces to repeated additions and multiplications of 

homogeneous components.    But as  the exponent    p    increases,  the  round off 

errors get bigger and bigger.    We have  two ways of watching the  increasingly 

destructive effects of the round off errors. 

First we know that,  for any integer    p ^ 0,    the  term of either 

(r/a)  p        or     (r/a) p    which is  independent of    £    is a polynomial in    e 

whose degree is    2p.    Now the program ignores this property, and 

consequently this polynomial appears in the output  as a  (truncated)  series 

2 
in    e  .     We can estimate the contaminating influence of the  round off errors 

by Inspecting  these spurious coefficients.     They are entered in Tables III 

and IV. 

Another check on the calculations  of the successive powers     (r/a) 

is suggested by Brown and Shook  [1].     For any rational  integer 

p    (> 0    or    <  0),    we find that 

■••«»*j»tiviw„wi^lj,i,ijiägaj 
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DRP - pRP_1 • DR, 

D2RP - p(p - 1)RP"2 • (DR)2 + PR1*"1 • D2R, 

so that, in view of the energy integral 

(31) (DR)2 + ±=f-  " f = "I 

belonging to the Routhian function (9) and of the Lagrangian equation 

(32) D2R = 1-e 
3    2 

R    R 

derived from the same function  (9),  we obtain that 

(33)    - D2RP +  (p -  1)RP~2 -   (2p -  3)RP~3 +  (p - 2)(1 -  e2)RP'4 =  0. 

Thus,   for   instance,  by making    p    equal to    2,  3, 4    successively. 

12 2 J DV = -1 + R  ' 

12  3 2     1 ■j DZRJ - -2R + 3 -  (1 - e*) j , 

IDV -3R2 + 5R - 2(1  - e2). 

The left-hand members of (33) are not as good an error control as the 

residuals in the power series of e which is the independent term of 

(r/a) .  Indeed they imply that we take the second derivative of a 

Fourier series, and that is not, as we know, the most favorable operation 

/ 
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we should perform on a trigonometric sum.  We do not reproduce here 

the series which we have computed from (33) for p " 5 to 20; their 

coefficients are somewhat similar to the residuals listed In Tables III 

and IV. 

On the whole, a detailed examination of the round off errors 

produced In any coefficient of the powers  (r/a)p and {airy 

(1 £ p £ 20) has convinced us that the elementary techniques advocated 

here guarantee more than the accuracy which Is required In Perturbation 

Theories from the expansions of the elliptic motion. 

Other techniques, of course, are possible.  But, as we shall show 

it on another algorithm in the next section, it Is of the utmost 

Importance that whe residuals should be examined carefully before a 

proposed technique is adopted, and its ret ilts entered as data into a 

major Perturbation Theory. 

3.  THE DIRECT EXPANSION OF (r/a) cos f AND  (r/a) sin f 

Let us come back to the Lagranglan function (7) expressed in 

normalized heliocentric Cartesian coordinates  (X,Y).  To these variables 

we substitute the variables  (C»n) defined by the non-conservative 

relations 

(34) 
X ■ cos i + C cos £ - n sin A, 

Y ■ sin £ + C sin Ä + n cos I, 

so that the Lagranglan function becomes 
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(35)   £ - 5s[(D02 + (Dn)2] + (C • Dn - n • DO + ^R2 + ^ 

with 

(36) jl + 2C + C2 + n2!15. 

It is obvious that C = n = 0 is an equilibrium solution for the system; 

In fact, it corresponds to the circular motion.  In order to study the 

Keplerian motions around this equilibrium, we expand R in Taylor series 

in the powers of C and n. 

Such an expansion is carried on automatically on the computer by means 

of programs which manipulate symbolically double power series. 

We look at a series 

AU,n) = I  S a4w^rik 
j>0 k>0 J 

as a sum of homogeneous components 

A = y An(C,n), 
r>  n 

n>0 

where, for any n >^ 0, 

n  _ ^-   n-j ,1 
0<j<n   J J 

n-JnJ 

is a homogeneous polynomial of degree n  in the variables  C and  n 

2 
If we take R  for the series A,  we would have 
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A0.l. 

A1 - 2C, 

2   2 
A2 - r + n , 

Since A- > 0,  the series A has a formal square root, which we 

shall denote by B.  In our case,  B is the Taylor expansion of the 
■A „ 

normalized distance    R    in  the powers of     ^    and    n-     The homogeneous 

components    B      of    B    are determined by recurrence from the  fundamental 

relation 

! 

according to the formulae: 

B0=V^' 

2 
B = A 

B1 = A1/2B0, 

B = 
n 

^ -   V   B.B 
l<j<n-l J  J 

/2B, (n 12) 

Since B-. - 1,  the series B has a formal inverse, which we shall 

denote by C. In our case, C is the Taylor expansion of 1/R in the 

powers of  C and n« The homogeneous components C  of C are computed 

recursively from the definition 

BC - 1 

according  to the formulae 

1/B0. 

-B^Q/BQ, 

0<J<n-l n-j  j 
/B, (n > 2). 
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Through these manipulations of polynomials, we come to the 

development 

n>3y0<j<n " J'J     I 

Accordingly, around the equilibrium, the Lagrangian function £    is 

decomposed into the series 

n>2    n 

£2  = ^[(DO
2 + (Dn)2] + (C • Dn - n • DO + | C2, 

£    =  y  ^ . ^n'jnj   (n > 3). 
0<j<n   J'J 

We address ourselves first to the Lagrangian equations derived 

from £„,     namely 

(D2 - 3K - 2Dn = 0, 
(37) 

D(Dn + 20 = 0. 

They constitute a homogeneous linear system with constant coefficients. 

Using Putzer's algorithm [9], we find its resolvent R(^).  It is a 

4*4 matrix 

R(O = (rltja))1<1(j<4 
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whose coefficients are as follows 

1,1 

1.2 

1,3 

1,4 

4-3 cos £, 

0, 

sin Z, 

2(1 - cos i). 

2.1 

2,2 

2,3 

2,4 

-6( i   -  sin I), 

1, 

-2(1 - cos I), 

-3* + 4 sin i. 

3,1 

3,2 

3,3 

3,4 

3 sin i, 

0, 

cos i, 

2  sin i. 

^,1 - -6(1 - cos i). 

r4,2 = 0 

4,3 

4,4 

-2 sin i, 

-3+4 cos £. 

The general solution of (37) 

C = rl.lC0 + ^^^O + r1.3^0 + rl,4^0' 

n = r2,lC0+ r2.2n0      r2.3C0+ r2.4^0' 

can thus be written in the form 

(38) 

C - 2A - B cos Z + C sin i, 

n = D - 3A)l + 2C cos H + 2B sin £, 

where the arbitrary constants A, B, C, D will have to be determined by 

the Initial conditions. 

«•«««Mf 
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In view of (38), the first order variational equations around the 

equilibrium admit a periodic solution if and only if A = 0. Moreover, 

this solution (£,(0,1,(0) satisfy the symmetry conditions 

C1(-£) = C1(Ä).    n1(-0 = -n1(£) 

if and only if C = D = 0. Hence B remains as a parameter, and from 

what we know of the Keplerian motions, we can identify  B  to the 

eccentricity e. 

To summarize, a first order analysis of the motion around the 

equilibrium yields a one parameter family of symmetric periodic orbits 

C, = -e cos £, 

n, = 2e sin I. 

The problem is to continue analytically this family into a solution 

of the complete differential equations, which is of the form 

(39)     £U;e) = I ^(l)ek
t 

k>l 
V nU;e) = £ n, (Oe 

k>l 

where the coefficients £,  and n,  are periodic in i    with  period 2TT 

In view of the symmetry R(C,-n) = R(£,n),  the coefficients 

in the homogeneous components .£ (n ^ 3) vanish for all odd indices k. 

Hence we can impose on the coefficients Ck(£) and ^1.(0 the symmetry 

conditions 
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(40) C.(-Ä) = L(l>, n,.(-Ä) ' -n, (£) (k > 1). 

It  implies that,   for any    k >_ 1,     £,     is a sura of  cosine terms only, 

and    n,     a sum of sine  terms only. 

We shall also impose  the perigee condition 

(41) Ck(0)  =0 (k  > 2). 

Using Poincare's method of the small parameter, it can be established 

that there exists one, and only one, family of periodic solutions in the 

form (39) which satisfies the symmetry conditions (40) and the initial 

conditions (41). 

In order to outline the recursive steps that we have to take in 

determining the coefficients E,      and n. » we shall introduce the 

following notations: 

i k 
1° For any j ^ 1.  and k ^ 1, we write the monomial  ^J n  as 

the series 

^nk = 1    xJ'k(Oen. 
J.I  n nvj+k 

2° We put 

n>3 n>3 

these partial derivatives, when expressed in terms of e and £, 

are series of the form 

-.'.■.«««•sa^i    • 
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U • I U (Oen.     V = I    Vn(£)e
n, 

n>2 n>2 

wherein 

U -  V    V  (k + Doo,^  1X
k'm"k(Ä), n  0 ^  . f  v     k+l,m-k n   v ^ 2<m<n 0<k<m 

n  _ ^  „ -r- m-k,k+l n 2<m<n 0<k<m 

With these notations, it is obvious that, once all coefficients 

i   k XJ' (Ä.) are known up to order n - 1  for j ^1, k ^ 1 and 

j + k <^ n - 1,  then we can generate by multiplication of finite 

i k trigonometric sums the coefficients X  (£)  of order n for j 1 1. 

k > 1  and i + k = n,  and consequently the expressions U  and V . —       J M    J      K n       n 

In this way we have built the differential equations 

(42) 

(D' - 3K - 2Dn = U , n     n   n 

D(Dn + 2C ) = V n    n    n 

which define the terms of order n in the series (39). 

Before we integrate this system, let us state two properties which 

are satisfied by the coefficients £  and n • n       n 

(a) For any n > 0, 

(A3)     C2n+1U + *) = -C2n+1U), n2n+1(£ + n) = -^^(l). 
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In other words, the coefficients at odd orders contain only odd 

multiples of the argument i. 

(b) For any n > 1, 

(44)     £2nU + 71) = C2n(0,    n2nU + rr) - ^(i). 

At even orders, the coefficients contain only even multiples of the 

argument SL. 

These properties can be established by recurrence. They are essential 

to the success of the recurrence scheme by which the coefficients  £  and 
■' n 

n      are computed and, as we shall point  out,  they provide valuable checks 

on the accuracy of the calculation. 

We determine a particular solution of the system (42)  by first 

performing the  quadrature which is the second equation and by substituting 

the  result  into  the first  equation.     Thus,   if 

W    = -r V  , 
n      D    n 

t>    = U    -  2W n        n n (n > 2), 

we find that the system is reduced to the equation 

(43) (D' + 1)£ = * • n   n 

At  this point,  we ought to remark that,  at even orders,    ♦      is a sum of 

cosines of even multiples of    £,    but,  at  odd orders,   it  is a sum of cosines 

of odd multiples of    I.    That,  in  ;his latter case.  It does not contain 

-■■!( 
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terms in cos I    Is a consequence of Poincare's theorem.  In point of 

fact, should we carry the calculation of iju  ,  in integer arithmetic,— 

and we did it by hand up to order 5 —, we would find that this critical 

term vanishes by cancellation. But, as we compute in double precision 

arithmetic, it will appear with a small coefficient about the size of the 

cumulative errors caused by rounding off. As it constitutes a valuable 

control on the errors, we have reproduced it in Table V. 

We now apply the rules (24..) and (24^) to construct the particular 

solution 

(44) 
^n* 1— <f , 

2., n 
D +1 

Observe that £* contains a term independent of £ if and only if n 

is even.  Thus, in the quadrature 

(45) 
n  D n 

(W - 2^*) 

resulting from the second of the equations (42), there occurs a secular 

term, say K £,  if and only if n is even, 
n 

Because the equations (37) constitute the homogeneous system belonging 

to (42), the general solution of (42) is of the form 

£ = 2A - B cos  Z + C    sin  I +  C*, 
n    n   n        n        n 

n = D - 3A £ + 2C cos £ + 2B sin £ + n*. 
n   n    n     n n        n 

In view of the symmetry conditions (40), we have that 
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C    - D    - 0. n        n 

The other two coefficients    A      and    B      are to be determined  in different 
n n 

ways depending on whether the order n is even or odd. 

(a)  If n Is even, the parity rule (44) Implies that 

B = 0; 
n 

and, for  n  to be periodic in i,    we must have that 

A = -K /3. 
n    n 

In which case, the perigee condition (41)  provides a check on the 

accuracy,  namely the relation 

(46) 2An  -  C*(0)   =  0. n        n 

The  residuals on this  relation are entered in Table V. 

(b)     If    n    is odd, because    n*    is exempt  from secular terms, we 

must have 

A    = 0 
n 

for n  to be periodic.  Then the perigee condition (41) serves to 
n 

compute that 

n   n 

««««fe^iiii 
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Table V 

Error controls in the expansions of C and n 

■ ■     -     .--...—,  , 

Order II ror Order Error 

2 0 3 0 

4 0.6 X io-15 5 0 

6 0.4 X io-14 7 0.1 x io"13 

8 0.4 X io'13 9 0.7 x io"13 

10 -0.1 X io"12 11 0.4 x io"12 

12 -0.1 X io"11 13 0.1 x io"10 

14 0.1 X io"10 15 0.1 x io'9 

16 -0.1 X io"9 17 -0.2 x io"8 

i 

Compared with the corresponding ones in Tables I and II, the entries 

of Table V indicate that the algorithm we just described is less favorable 

than the first one in accuracy.  The reason is that the series U  and 
n 

V  are obtained by combining terms of the same size—a defect already 
n 

mentioned by Brown and Shook [1], 

Before we conclude the analysis of this algorithm, let us consider 

one more check.  Once the expansions of  C and n are known, those for 

X = x/a and Y = y/a can be calculated from the transformation formulae 

(34). Now we know that the average value of X over the mean anomaly is 

equal to -3/2 e, which means that the Independent term in the expansion 

of X reduces to that term. Actually, by composing the developments of 

C and n according to the first of the transformation formulae (34), 

we find for the Independent term a truncated series in e. In the 
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second column of Table VI, we enter those coefficients as they have been 

computed by the program; they reflect the increasingly damaging propagation 

of the round off errors throughout the recurrence.  Indeed, that the 

average value of X does not contain the eccentricity beyond the first 

power implies that, for each n ^ 1, the coefficient X.  . ..  of 

e   cos i    in the expansion of  C should be equal to the coefficient 

Y„ ., ,  of e   sin SL    in the expansion of  n«  For the sake of 
^n+i,i 

comparison, we enter the difference  Ix,, ,, , - Y- ,, , I  in the second r ' 2n+l,l   2n+l,ll 

column of Table VI. 

Table VI 

Error controls in the expansion of x/a 

1 

Order x/a X2n+l.l Y2n+l.l' 

3 0 0 

5 -0.4  x  lO-15 0.75 x IQ-15 

7 -0.1 x io'13 0.20 x io"13 

9 -0.4  x   io"13 0.74 x  IO-13 

11 
-12 0.8  x  io "^ 0.16 x io"11 

13 -0.3  x  io'11 0.56 x  IQ-11 

15 -0.3  x  io"10 0.55 x  IO"10 

17 0.8  x  io'9 0.16 x  IQ-8 

i 

MMMutttU) 
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4.     CONCLUSIONS 

The classical expansions of the elliptic motion in terms of the 

mean anomaly can be obtained in a straightforward manner by applying 

Poincare's method of continuation to finding periodic solutions to the 

differential motions in the neighborhood of  the circular motions. 

The programs that we propose here are fast.    The first algorithm 

builds  the expansions  of all powers     (cos E)   ,     1 <  p  <  30,    up  to the 

degree    30    in the eccentricity in less than 6 minutes on an IBM 7094. 

Because it needs a disk file to store the series representing the 

monomials    C  n     (0 <_p <_^7, 0<^q  <  17),     the  second algorithm  takes 

18 minutes of an IBM 7094 to complete the recurrence at order 17. 

As long as  the  order of the expansions  is not pushed unrealistically 

too high up,   these elementary programs can easily become parts of major 

undertakings as  required by the classical Perturbation Theories. 

A special effort  was made to provide enough error controls,   so that 

the reader may judge the quality of accuracy he may expect from these 

algorithms at various orders.    Thus we concede that, although it  is more 

extensive in the intermediary results that  it  brings out,   the second 

algorithm proposed here yields sensibly less accuracy at  somewhat higher 

orders  than the  first  one. 
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ANNEXES 

To the reader who would like to set up subroutines needed for 

manipulating Poisson series of the type  (1,1)  and to assemble 

therefrom a program to apply Polncare's method of continuation to the 

Problem of Two Bodies, it may be of some use to check the results 

generated by the computer against the correct answers at the few first 

orders. Thus we reproduce here the calculations made by hand against 

which we checked our procedures. The notations in Annexes 1 and II 

adhere strictly to those introduced respectively in Sections 1 and 3. 

j 
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ANNEX I 

Expansion of cos E 

P0 = cos l. 

l^ = - -J - j cos 21, 

Pl = ~  2 + 2  COS 2i' 

c1 = 0, 

P1 = - 2 
+ 2 cc,s 2?" 

U2 = -3 cos 3i, 

p* = - cos 31, 

C    = - - L2 8 ' 

3        3 
P„ = - — cos ^ + "^ cos 3U 

U. = cos 2ü - 5 cos 4£, 

- — cos 2 U + — cos 4{,, 

C, = Ü, 

- cos 2 ? + - cos 4£. 
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Order A 

p4* 

45 in        125 c, TT cos  31 - -TT" cos  5£, 
io ib 

^5 .„ ,   125 Co 

- H? C0S 3£ + 384 COS  5Jl' 

( 

Order 5 

C, = 192 ' 

5     „  ^5    00 . 125    .„ 
Ygj cos ^ ~ TJQ  COS 3^ + 384" cos ^. 

Ur   = 

P* 

- TT cos 2£ + 6  cos  4il io 
189 
16 cos  6£, 

TT cos  2£ - T cos  4£ + 7777 cos   of,, 
lb D 5bü 

Cc  =  0, 

1 2 189 
7-7 cos  2£ - 7 cos 4£ + 777- cos   6£. 
ib J jbU 

These coefficients were  checked by substituting  the solution  in  the 

energy  integral  belonging  to the  Routhian  function   Jt   given by formula 

(9)  in the   text. 
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^  f3 3    „1    ,„ 
in £,  : - — cos ü ~ T cos 3i, 

2 
in f, n: h  sin i + h  sin 31, 

2 
in Cn ! -cos £ + cos 3£, 

3 
in • :  6 sin £ - 2 sin 311; 

U- = -r cos i - T  cos 3£, 3   4        4 

9       39 
V„ = — sin £ —jT" sin 3£, 

3 
C* = -g cos 3£, 

9        7 
n4 = - ö" sin %■ + -rr  sin 3£, 

A3 = 0' B3 = 8 ' 

3       3    ^ 
£- = - -ö cos ?. + ö' COS 3£, 

3       7 
n., = - "5" sin £ + -rr sin 3£. Jo        24 

4 
Coefficient of e 

in C : ■;— T cos 2£ - -r  cos 4£, 4  2 4 

in Cn: - , sin 2i + -rr  sin 4£, 

2 23 . 4    n„   59    .„ 
in ^ : - T?" + T cos  *• ~ 96 cos  * 

3 3  3 
in C = - g + g cos 4£, 

2 9        7 
in  C n: 7 sin 2£ - — sin 4£, 

2   7 1 
in  fn : " T + 2 cos 2£ - -r cos 4£, 

4 4 

3 3        3 
in n : T sin 2£ - — sin 4£, 

4 3  1        1 
in C : r + 7 cos 2* + g cos 4£, 






